Combined Electrostatic/Electromagnetic MEMS Actuators

dc.contributor.authorAlneamy, Ayman
dc.date.accessioned2016-08-10T19:20:47Z
dc.date.available2017-08-11T04:50:05Z
dc.date.issued2016-08-10
dc.date.submitted2016-08-08
dc.description.abstractIn this work, one and two degrees of freedom (DOF) lumped mass models of Micro- Electro-Mechanical System (MEMS) actuators are introduced, investigated, and compared to experimental results. A one degree of freedom system representing the actuators out-of plane bending motion under the electrostatic excitation is demonstrated. The capacitive gap between the movable plate and stationary electrode decreases when the microplate inclination angle is accounted for in the model. We investigate experimentally the primary, superharmonic of order two, and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a 1-DOF generalized Duffing oscillator, model that represents it. The experiments were conducted in soft vacuum in order to reduce squeeze- film damping and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the power level of process (actuation voltage) and measurement noise. A one DOF model of the actuator's torsional motion under the electrostatic torque is also introduced. It was found that utilizing electrostatic actuation in torsional motion is not e ffective. The maximum angle obtained was 0.04 degrees at high voltage. Finally, a novel two DOF model of the MEMS actuator's torsion and bending under electrostatic and electromagnetic excitation was demonstrated analytically and compared to experimental results. Torsional motions were driven by a torque arising from a Lorentz force. It succeeded in generating a large torsion angle, 1 degree at 1.35 T magnetic field density, and a current of 3.3 mA.en
dc.identifier.urihttp://hdl.handle.net/10012/10622
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectMEMSen
dc.subjectELECTROSTATICen
dc.subjectELECTROMAGNETICen
dc.subjectCOMBINED ACTUATORen
dc.titleCombined Electrostatic/Electromagnetic MEMS Actuatorsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorAbdel-Rahman, Eihab
uws.contributor.advisorHeppler, Glenn
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alneamy_Ayman.pdf
Size:
100.2 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: