Chromatic Number of Random Signed Graphs
dc.contributor.author | Yuan, Dao Chen | |
dc.date.accessioned | 2024-05-03T17:38:10Z | |
dc.date.available | 2024-05-03T17:38:10Z | |
dc.date.issued | 2024-05-03 | |
dc.date.submitted | 2024-05-01 | |
dc.description.abstract | We naturally extend Bollobas's classical method and result about the chromatic number of random graphs chi(G(n,p)) ~ n/log_b(n) (for p constant, b=1/(1-p)) to the chromatic number of random signed graphs to obtain chi(G(n,p,q)) ~ n/log_b(n) (for p constant, b=1/(1-p), q=o(1)). We also give a sufficient bound on q under which a.a.s. the chromatic number of G(n,p,q) is unchanged before and after adding negative edges. | en |
dc.identifier.uri | http://hdl.handle.net/10012/20537 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.subject | random graph | en |
dc.subject | chromatic number | en |
dc.subject | signed graph | en |
dc.title | Chromatic Number of Random Signed Graphs | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws-etd.degree.discipline | Combinatorics and Optimization | en |
uws-etd.degree.grantor | University of Waterloo | en |
uws-etd.embargo.terms | 0 | en |
uws.contributor.advisor | Penny, Haxell | |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |