Chromatic Number of Random Signed Graphs

dc.contributor.authorYuan, Dao Chen
dc.date.accessioned2024-05-03T17:38:10Z
dc.date.available2024-05-03T17:38:10Z
dc.date.issued2024-05-03
dc.date.submitted2024-05-01
dc.description.abstractWe naturally extend Bollobas's classical method and result about the chromatic number of random graphs chi(G(n,p)) ~ n/log_b(n) (for p constant, b=1/(1-p)) to the chromatic number of random signed graphs to obtain chi(G(n,p,q)) ~ n/log_b(n) (for p constant, b=1/(1-p), q=o(1)). We also give a sufficient bound on q under which a.a.s. the chromatic number of G(n,p,q) is unchanged before and after adding negative edges.en
dc.identifier.urihttp://hdl.handle.net/10012/20537
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectrandom graphen
dc.subjectchromatic numberen
dc.subjectsigned graphen
dc.titleChromatic Number of Random Signed Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorPenny, Haxell
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yuan_DaoChen.pdf
Size:
513.59 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: