Partition Algebras and Kronecker Coefficients

dc.contributor.authorMarcott, Cameron
dc.date.accessioned2015-08-28T18:50:31Z
dc.date.available2015-08-28T18:50:31Z
dc.date.issued2015-08-28
dc.date.submitted2015
dc.description.abstractClassical Schur-Weyl duality relates the representation theory of the general linear group to the representation theory of the symmetric group via their commuting actions on tensor space. With the goal of studying Kronecker products of symmetric group representations, the partition algebra is introduced as the commutator algebra of the diagonal action of the symmetric group on tensor space. An analysis of the representation theory of the partition offers results relating reduced Kronecker coefficients to Kronecker coefficients.en
dc.identifier.urihttp://hdl.handle.net/10012/9618
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterloo
dc.subjectalgebraic combinatoricsen
dc.subjectrepresentation theoryen
dc.subject.programCombinatorics and Optimizationen
dc.titlePartition Algebras and Kronecker Coefficientsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Marcott_Cameron.pdf
Size:
492.66 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: