UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Discovering new viral lineages and estimating their abundance in wastewater

dc.contributor.authorEllmen, Isaac
dc.date.accessioned2022-09-27T15:04:40Z
dc.date.available2023-01-26T05:50:08Z
dc.date.issued2022-09-27
dc.date.submitted2022-09-22
dc.description.abstractWastewater surveillance of SARS-CoV-2 has emerged as a critical tool for tracking the spread of COVID-19. In addition to estimating the relative case numbers using qPCR, SARS-CoV-2 genomic RNA can be extracted from wastewater and sequenced. The sequenced genomes provide information about which lineages, in particular which variants of concern (VOCs) are present in a community. Wastewater RNA sequencing data has two distinct challenges: First, the genomes are highly fragmented and the alignments often have poor genome coverage. Second, the samples are comprised of a mixture of genomes so mutations cannot be directly attributed to a single lineage. In this thesis, I explore methods to overcome these two challenges to extract useful information from the samples. First, I look at the problem of determining the relative abundance of VOCs. Most existing techniques only consider mutations which are unique to a particular VOC which massively reduces the amount of usable data. I introduce a new technique which extends mean and median frequencies over shared mutations in order to make use of the huge pool of shared mutations. Next, I investigate strategies for designing single-amplicon sequencing methods. I look at selecting single amplicons which are well-conserved and rich in information. I also design a single amplicon which is capable of amplifying multiple coronaviruses. I conclude the SARS-CoV-2 work by providing a technique which can identify novel lineages and sublineages from wastewater sequencing runs. Finally, I show that the techniques for analyzing SARS-CoV-2 in wastewater can also be applied to an important plant pathogen, the Tomato Brown Rugose Fruit Virus.en
dc.identifier.urihttp://hdl.handle.net/10012/18818
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/Ellmen/alcoven
dc.relation.urihttps://github.com/Ellmen/derived-wastewater-lineagesen
dc.subjectbioinformaticsen
dc.subjectsars-cov-2en
dc.subjectwastewateren
dc.subjectsequencingen
dc.titleDiscovering new viral lineages and estimating their abundance in wastewateren
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentBiologyen
uws-etd.degree.disciplineBiologyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms4 monthsen
uws.contributor.advisorCharles, Trevor
uws.contributor.advisorNissimov, Jozef
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ellmen_Isaac.pdf
Size:
3.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections