Enhancing Recommender Systems with Causal Inference Methodologies

dc.contributor.authorHuang, Huiqing
dc.date.accessioned2023-08-22T17:25:09Z
dc.date.available2023-08-22T17:25:09Z
dc.date.issued2023-08-22
dc.date.submitted2023-08-17
dc.description.abstractIn the current era of data deluge, recommender systems (RSs) are widely recognized as one of the most effective tools for information filtering. However, traditional RSs are founded on associational relationships among variables rather than causality, meaning they are unable to determine which factors actually affect user preference. In addition, the algorithm of conventional RS continues to recommend similar items to users, resulting in user aesthetic fatigue and ultimately the loss of customer sources. Moreover, the generation of recommendations could be biased by the confounding effect, leading to inaccurate results. To tackle this series of challenges, causal inference for recommender systems (CI for RSs) has emerged as a new area of study. In this paper, we present four different propensity score estimation methods, namely hierarchical Poisson factorization (HPF), logistic regression, non-negative matrix factorization (NMF), and neural networks (NNs), and five causal effect estimation methods, namely linear regression, inverse probability weighting (IPW), zero-inflated Poisson (ZIP) regression, zero-inflated Negative Binomial (ZINB) regression, and doubly robust (DR) estimation. Additionally, we propose a new algorithm for parameter estimation based on the concept of alternating gradient descent (AGD). Regarding the study's reliability and precision, it will be evaluated on two distinct categories of datasets. Our research demonstrates that the causal RS can correctly infer causality from user and item characteristics to the final rating with an accuracy of 96%. Moreover, according to the de-confounded and de-biased recommendations, ratings can be increased by an average of 1.6 points (out of 4) for the Yahoo! R3 dataset and 1.2 points (out of 2) for the Restaurant and Consumer data.en
dc.identifier.urihttp://hdl.handle.net/10012/19741
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectcausal inferenceen
dc.subjectobservational studiesen
dc.subjectrecommender systemsen
dc.titleEnhancing Recommender Systems with Causal Inference Methodologiesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentData Scienceen
uws-etd.degree.disciplineData Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorZhu, Yeying
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Huang_Huiqing.pdf
Size:
441.96 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: