Exploring Radarsat-2 SAR Cross-Polarization Ratio Capability for Tundra Snow Depth Estimation Using Numerical and Deep Learning Approach

dc.contributor.authorCao, Yuanhao
dc.date.accessioned2024-01-25T14:49:00Z
dc.date.available2024-01-25T14:49:00Z
dc.date.issued2024-01-25
dc.date.submitted2024-01-18
dc.description.abstractSnow is essential to the Earth system, significantly influencing the global climate, freshwater availability, and economic activities. A significant snow cover decline has been reported in vast northern hemisphere areas. The decrease in snow cover will affect more than one-sixth of the world's population who rely on the snow as a freshwater supplement. Snow mass, often expressed as snow water equivalent (SWE), signifies the quantity of water held in the form of snow on the Earth's surface, and it plays a crucial role in the functioning of water, energy, and geochemical processes. Since the seasonal snow has a high spatial variability at regional and local scales, surface observations cannot provide sufficient SWE information. The quality of global SWE estimates needs to be improved. In recent years, C-band spaceborne SAR has shown a high potential for global monitoring of SWE. This thesis aims to explore the current spaceborne C-band SAR signal sensitivity to Arctic tundra snow and define a suitable approach for estimating deep snow depth through the tundra environment. The noticeable variation of C-band backscatter with the snow depth generally demonstrated the C-band sensitivity to dry snow for the deep snow. These areas are dominated by tall vegetation areas such as tall shrubs and riparian shrubs. The cross-polarization ratio method also shows a higher correlation with snow depth than cross-pol and co-pol backscatter, which is generally consistent with earlier research. Also, numerical, and deep learning (DL) approaches were tested based against drone-based snow depth reference data. The result shows that the numerical approach may only be valid in a place with over 2.5 m snowpack. Compared to the numerical approach, the DL approach shows a better evaluation, resulting in a correlation coefficient of R 0.79 between the estimated and target snow depth with a root mean square error (RMSE) of 19 cm. The DL approach can be more suitable for estimating snow depth from C-band SAR observation under the Arctic tundra snow environment.en
dc.identifier.urihttp://hdl.handle.net/10012/20286
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleExploring Radarsat-2 SAR Cross-Polarization Ratio Capability for Tundra Snow Depth Estimation Using Numerical and Deep Learning Approachen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentGeography and Environmental Managementen
uws-etd.degree.disciplineGeographyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorKelly, Richard
uws.contributor.affiliation1Faculty of Environmenten
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cao_Yuanhao.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: