Preserving Texture Boundaries for SAR Sea Ice Segmentation

dc.contributor.authorJobanputra, Rishien
dc.date.accessioned2006-08-22T13:55:23Z
dc.date.available2006-08-22T13:55:23Z
dc.date.issued2004en
dc.date.submitted2004en
dc.description.abstractTexture analysis has been used extensively in the computer-assisted interpretation of SAR sea ice imagery. Provision of maps which distinguish relevant ice types is significant for monitoring global warming and ship navigation. Due to the abundance of SAR imagery available, there exists a need to develop an automated approach for SAR sea ice interpretation. Grey level co-occurrence probability (<i>GLCP</i>) texture features are very popular for SAR sea ice classification. Although these features are used extensively in the literature, they have a tendency to erode and misclassify texture boundaries. Proposed is an advancement to the <i>GLCP</i> method which will preserve texture boundaries during image segmentation. This method exploits the relationship a pixel has with its closest neighbors and weights the texture measurement accordingly. These texture features are referred to as <i>WGLCP</i> (weighted <i>GLCP</i>) texture features. In this research, the <i>WGLCP</i> and <i>GLCP</i> feature sets are compared in terms of boundary preservation, unsupervised segmentation ability, robustness to increasing boundary density and computation time. The <i>WGLCP</i> method outperforms the <i>GLCP</i> method in all aspects except for computation time, where it suffers. From the comparative analysis, an inconsistency with the <i>GLCP</i> correlation statistic was observed, which motivated an investigative study into using this statistic for image segmentation. As the overall goal of the thesis is to improve SAR sea ice segmentation accuracy, the concepts developed from the study are applied to the image segmentation problem. The results indicate that for images with high contrast boundaries, the <i>GLCP</i> correlation statistical feature decreases segmentation accuracy. When comparing <i>WGLCP</i> and <i>GLCP</i> features for segmentation, the <i>WGLCP</i> features provide higher segmentation accuracy.en
dc.formatapplication/pdfen
dc.format.extent26191689 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/913
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2004, Jobanputra, Rishi. All rights reserved.en
dc.subjectSystems Designen
dc.subjectGrey level co-occurrence probabilitiesen
dc.subjecttexture analysisen
dc.subjectimage segmentationen
dc.subjectSAR sea iceen
dc.subjecttexture featuresen
dc.titlePreserving Texture Boundaries for SAR Sea Ice Segmentationen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rjobanpu2004.pdf
Size:
24.98 MB
Format:
Adobe Portable Document Format