Fingerprinting Codes and Related Combinatorial Structures
Loading...
Date
Authors
Guo, Chuan
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Fingerprinting codes were introduced by Boneh and Shaw in 1998 as a method of copyright control. The desired properties of a good fingerprinting code has been found to have deep connections to combinatorial structures such as error-correcting codes and cover-free families. The particular property that motivated our research is called "frameproof". This has been studied extensively when the alphabet size q is at least as large as the colluder size w. Much less is known about the case q < w, and we prove several interesting properties about the binary case q = 2 in this thesis.
When the length of the code N is relatively small, we have shown that the number of codewords n cannot exceed N, which is a tight bound since the n = N case can be satisfied a trivial construction using permutation matrices. Furthermore, the only possible candidates are equivalent to this trivial construction. Generalization to a restricted parameter set of separating hash families is also given.
As a consequence, the above result motivates the question of when a non-trivial construction can be found, and we give some definitive answers by considering combinatorial designs. In particular, we give a necessary and sufficient condition for a symmetric design to be a binary 3-frameproof code, and provide example classes of symmetric designs that satisfy or fail this condition. Finally, we apply our results to a problem of constructing short binary frameproof codes.