New Constraints on the Halo Mass of Ultra-Diffuse Galaxies with UNIONS using Weak Gravitational Lensing

Loading...
Thumbnail Image

Date

2024-08-19

Advisor

Balogh, Michael
Hudson, Mike

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

While a lot of progress has been made in detecting and measuring various properties of Ultra-diffuse Galaxies (UDGs) over the last decade, the dark matter halo mass of these extremely faint and large objects remains a mystery. A better constraint on the total halo mass of UDGs would disentangle the wide variety of proposed formation mechanisms. We detect a contaminated sample of 545 potential UDGs, of which we estimate 290 to be true UDGs, in the ongoing Ultraviolet Near Infrared Optical Northern Sky Survey (UNIONS) using the Canada-France Imaging Survey (CFIS) r-band imaging, limiting our search to within 66 galaxy clusters up to redshift z ≤ 0.1. From weak gravitational lensing measurement around our UDG sample corrected for interloper contamination, we find an excess surface density consistent with zero (no detection) and a 2σ upper limit on the average halo mass of m200 ≤ 10^12.51 M⊙. By combining our measurement with that of Sifón et al. (2018), the only other weak gravitational lensing measurement of UDGs, we are able to constrain the halo mass further with a 2σ upper limit of m200 ≤ 10^12.05 M⊙ when accounting for the potential low-biasing effect of interlopers in this combined sample. Our results do not disentangle whether UDGs tend to be, on average, more dark matter-dominated or dark matter-deficient galaxies and therefore does not allow us to put new constraints on their formation mechanism. This work on UDG detection in a wide field survey optimized for weak lensing helps pave the way for future direct halo mass measurements of UDGs in upcoming surveys such as the Euclid Wide Survey.

Description

Keywords

ultra-diffuse galaxies, weak gravitational lensing, galaxy evolution, galaxy clusters

LC Subject Headings

Citation