Graph Morphing via Orthogonal Box Drawings

dc.contributor.authorSpalding-Jamieson, Jack
dc.date.accessioned2023-12-18T18:54:51Z
dc.date.available2023-12-18T18:54:51Z
dc.date.issued2023-12-18
dc.date.submitted2023-12-11
dc.description.abstractAbstract: A graph is a set of vertices, with some pairwise connections given by a set of edges. A graph drawing, such as a node-link diagram, visualizes a graph with geometric features. One of the most common forms of a graph drawings are straight-line point drawings, which represent each vertex with a point and each edge with a line segment connecting its relevant points, and poly-line point drawings, which more generally allow edges to be represented by poly-lines. Of particular interest to this work are planar straight-line drawings and planar poly-line drawings, in which no two vertices share a location, and no two edges cross (except at shared endpoints). We study the morphing problem for planar drawings: Given two planar drawings of the same graph, can we output a continuous transformation (a “morph”) from one to the other, such that each intermediate drawing is also a planar drawing? It is quite easy to test if a morph exists, but the test is non-constructive. We are interested in the problem of constructing morphs with simple representations. Specifically, we study sequences of linear morphs, which represent the overall morph with a sequence of drawings, so that each pair of adjacent drawings in the sequence can be linearly interpolated. Each drawing in the sequence is called an “explicit” intermediate drawing, since it given explicitly in the output. Previous work has shown that a pair of straight-line drawings of an n-vertex graph can be morphed using O(n) linear morphs, so that every explicit intermediate drawing is a straight-line drawing. We show that an additional constraint can be added, at the cost of a small tradeoff: We further restrict the explicit intermediate drawings to lie on an O(n)×O(n) grid, while allowing them to be poly-line drawings with O(1) bends per edge. Additionally, we give an algorithm that computes this sequence in O(n^2) time, which is known to be tight. Our methods involve morphing another class of drawings—orthogonal box drawings—which represent each vertex with an axis-aligned rectangle, and each edge with an orthogonal poly-line. Our methods for morphing orthogonal box drawings make use of methods known for morphing orthogonal point drawings, which are poly-line drawings that restrict each poly-line to use only axis-aligned line segments.en
dc.identifier.urihttp://hdl.handle.net/10012/20172
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgraph theoryen
dc.subjectgraph drawingen
dc.subjectgraph morphingen
dc.subjectorthogonal drawingen
dc.subjectplanar graphen
dc.subjectlinear morphen
dc.titleGraph Morphing via Orthogonal Box Drawingsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorLubiw, Anna
uws.contributor.advisorBiedl, Therese
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spalding-Jamieson_Jack.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: