UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Upsampling Indoor LiDAR Point Clouds for Object Detection

dc.contributor.authorYao, Yikai
dc.date.accessioned2023-05-24T17:03:20Z
dc.date.available2023-05-24T17:03:20Z
dc.date.issued2023-05-24
dc.date.submitted2023-05-10
dc.description.abstractAs an emerging technology, LiDAR point cloud has been applied in a wide range of fields. With the ability to recognize and localize the objects in a scene, point cloud object detection has numerous applications. However, low-density LiDAR point clouds would degrade the object detection results. Complete, dense, clean, and uniform LiDAR point clouds can only be captured by high-precision sensors which need high budgets. Therefore, point cloud upsampling is necessary to derive a dense, complete, and uniform point cloud from a noisy, sparse, and non-uniform one. To address this challenge, we proposed a methodology of utilizing point cloud upsam pling methods to enhance the object detection results of low-density point clouds in this thesis. Specifically, we conduct three point cloud upsampling methods, including PU-Net, 3PU, and PU-GCN, on two datasets, which are a dataset we collected on our own in an underground parking lot located at Highland Square, Kitchener, Canada, and SUN-RGBD. We adopt VoteNet as the object detection network. We subsampled the datasets to get a low-density dataset to stimulate the point cloud captured by the low-budget sensors. We evaluated the proposed methodology on two datasets, which are SUN RGB-D and the collected underground parking lot dataset. PU-Net, 3PU, and PU-GCN increase the mean Average Precision (under the threshold of 0.25) by 18.8%,18.0%, and 18.7% on the underground parking lot dataset and 9.8%, 7.2%, and 9.7% on SUN RGB-D.en
dc.identifier.urihttp://hdl.handle.net/10012/19478
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectpoint clouden
dc.subjectLiDARen
dc.subjectupsamplingen
dc.subjectobject detectionen
dc.titleUpsampling Indoor LiDAR Point Clouds for Object Detectionen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentGeography and Environmental Managementen
uws-etd.degree.disciplineGeographyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorLi, Jonathan
uws.contributor.affiliation1Faculty of Environmenten
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yao_Yikai.pdf
Size:
11.84 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: