Entire Solutions to Dirichlet Type Problems

dc.contributor.authorSitar, Scott
dc.date.accessioned2007-08-02T17:33:19Z
dc.date.available2007-08-02T17:33:19Z
dc.date.issued2007-08-02T17:33:19Z
dc.date.submitted2007
dc.description.abstractIn this thesis, we examined some Dirichlet type problems of the form: \begin{eqnarray*} \triangle u & = & 0\ {\rm in\ } \mathbb{R}^n \\ u & = & f\ {\rm on\ } \psi = 0, \end{eqnarray*} and we were particularly interested in finding entire solutions when entire data was prescribed. This is an extension of the work of D. Siegel, M. Mouratidis, and M. Chamberland, who were interested in finding polynomial solutions when polynomial data was prescribed. In the cases where they found that polynomial solutions always existed for any polynomial data, we tried to show that entire solutions always existed given any entire data. For half space problems we were successful, but when we compared this to the heat equation, we found that we needed to impose restrictions on the type of data allowed. For problems where data is prescribed on a pair of intersecting lines in the plane, we found a surprising dependence between the existence of an entire solution and the number theoretic properties of the angle between the lines. We were able to show that for numbers $\alpha$ with $\omega_1$ finite according to Mahler's classification of transcendental numbers, there will always be an entire solution given entire data for the angle $2\alpha\pi$ between the lines. We were also able to construct an uncountable, dense set of angles of measure 0, much in the spirit of Liouville's number, for which there will not always be an entire solution for all entire data. Finally, we investigated a problem where data is given on the boundary of an infinite strip in the plane. We were unable to settle this problem, but we were able to reduce it to other {\it a priori} more tractable problems.en
dc.format.extent430377 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/3147
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectpartial differential equationsen
dc.subjectharmonic functionsen
dc.subjectentire functionsen
dc.subjectpotential theoryen
dc.subject.programApplied Mathematicsen
dc.titleEntire Solutions to Dirichlet Type Problemsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
420.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
248 B
Format:
Item-specific license agreed upon to submission
Description: