Local properties of graphs with large chromatic number

dc.contributor.authorDavies, James
dc.date.accessioned2022-08-31T14:36:22Z
dc.date.available2022-08-31T14:36:22Z
dc.date.issued2022-08-31
dc.date.submitted2022-08-24
dc.description.abstractThis thesis deals with problems concerning the local properties of graphs with large chromatic number in hereditary classes of graphs. We construct intersection graphs of axis-aligned boxes and of lines in $\mathbb{R}^3$ that have arbitrarily large girth and chromatic number. We also prove that the maximum chromatic number of a circle graph with clique number at most $\omega$ is equal to $\Theta(\omega \log \omega)$. Lastly, extending the $\chi$-boundedness of circle graphs, we prove a conjecture of Geelen that every proper vertex-minor-closed class of graphs is $\chi$-bounded.en
dc.identifier.urihttp://hdl.handle.net/10012/18679
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgraph theoryen
dc.subjectcolouringen
dc.titleLocal properties of graphs with large chromatic numberen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorGeelen, Jim
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Davies_James.pdf
Size:
930.48 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: