Finding a Second Hamiltonian cycle in Barnette Graphs
dc.contributor.author | Haddadan, Arash | |
dc.date.accessioned | 2015-08-31T20:09:07Z | |
dc.date.available | 2015-08-31T20:09:07Z | |
dc.date.issued | 2015-08-31 | |
dc.date.submitted | 2015-08-31 | |
dc.description.abstract | We study the following two problems: (1) finding a second room-partitioning of an oik, and (2) finding a second Hamiltonian cycle in cubic graphs. The existence of solution for both problems is guaranteed by a parity argument. For the first problem we prove that deciding whether a 2-oik has a room-partitioning is NP-hard, even if the 2-oik corresponds to a planar triangulation. For the problem of finding a second Hamiltonian cycle, we state the following conjecture: for every cubic planar bipartite graph finding a second Hamiltonian cycle can be found in time linear in the number of vertices via a standard pivoting algorithm. We fail to settle the conjecture, but we prove it for cubic planar bipartite WH(6)-minor free graphs. | en |
dc.identifier.uri | http://hdl.handle.net/10012/9630 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | |
dc.subject | Parity argument | en |
dc.subject | oik | en |
dc.subject | room-partitioning | en |
dc.subject | exchange algorithm | en |
dc.subject | cubic graph | en |
dc.subject | Barnette's conjecture | en |
dc.subject.program | Combinatorics and Optimization | en |
dc.title | Finding a Second Hamiltonian cycle in Barnette Graphs | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |