Finding a Second Hamiltonian cycle in Barnette Graphs

dc.contributor.authorHaddadan, Arash
dc.date.accessioned2015-08-31T20:09:07Z
dc.date.available2015-08-31T20:09:07Z
dc.date.issued2015-08-31
dc.date.submitted2015-08-31
dc.description.abstractWe study the following two problems: (1) finding a second room-partitioning of an oik, and (2) finding a second Hamiltonian cycle in cubic graphs. The existence of solution for both problems is guaranteed by a parity argument. For the first problem we prove that deciding whether a 2-oik has a room-partitioning is NP-hard, even if the 2-oik corresponds to a planar triangulation. For the problem of finding a second Hamiltonian cycle, we state the following conjecture: for every cubic planar bipartite graph finding a second Hamiltonian cycle can be found in time linear in the number of vertices via a standard pivoting algorithm. We fail to settle the conjecture, but we prove it for cubic planar bipartite WH(6)-minor free graphs.en
dc.identifier.urihttp://hdl.handle.net/10012/9630
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterloo
dc.subjectParity argumenten
dc.subjectoiken
dc.subjectroom-partitioningen
dc.subjectexchange algorithmen
dc.subjectcubic graphen
dc.subjectBarnette's conjectureen
dc.subject.programCombinatorics and Optimizationen
dc.titleFinding a Second Hamiltonian cycle in Barnette Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Haddadan_Arash.pdf
Size:
783.55 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: