The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Assessment of Germanane Field Effect Transistors: From Intrinsic Device to CMOS Circuit Performance

Loading...
Thumbnail Image

Date

2018-08-02

Authors

Zhao, Yiju

Advisor

Yoon, Youngki

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) and black phosphorus (BP) have been in the spotlight for next-generation complementary metal-oxide- semiconductor (CMOS) technology due to their outstanding electronic properties. Recently, germanane (GeH), a hydrogenated germanium monolayer has emerged as a new family of 2D semiconductors. High carrier mobility of GeH as well as promising potential for electronic devices were predicted earlier. However, previous studies were based on a semi-classical model, which cannot properly capture quantum mechanical phenomena generally observed in nanoscale devices. In addition, intrinsic device performance, such as intrinsic delay and switching energy, and circuit-level analyses of GeH field- effect transistors (FETs) are currently absent from the field, the understanding of which will be essential to make use of GeH for future electronic devices. Therefore, in this thesis, a comprehensive study, including material parameterization, device optimization and circuit analysis of GeH FETs will be discussed by means of rigorous self-consistent atomistic quantum transport simulations within a tight- binding approximation. This thesis covers the following topics: (1) introduction to multi-scale simulations including material parameterization, device simulation and circuit analysis, (2) investigation of transport characteristics and the scaling limit of n-type GeH metal-oxide-semiconductor (MOS) FETs, (3) assessment of GeH MOSFETs for CMOS technology with device optimization, (4) investigation of intrinsic performance of GeH Schottky-barrier (SB) FETs, and (5) discussion of possible future works, such as Ge-GeH heterostructure and multilayer GeH FETs to seek further opportunities. Our results suggest that GeH MOSFET exhibits excellent on-state performance as well as the superior circuit behaviors in terms of energy-delay product. It is also proven that GeH SBFET can be as promising as the MOSFET counterpart despite the performance degradation imposed by the metal-semiconductor junction. Our comprehensive study covering material, device and circuit simulation reveals the significant potential of germanane for the next-generation nanoelectronic devices.

Description

Keywords

LC Subject Headings

Citation