The Traveling Tournament Problem

dc.contributor.advisorCheriyan, Joseph
dc.contributor.authorBendayan, Salomon
dc.date.accessioned2022-08-17T13:32:46Z
dc.date.available2022-08-17T13:32:46Z
dc.date.issued2022-08-17
dc.date.submitted2022-08-11
dc.description.abstractIn this thesis we study the Traveling Tournament problem (TTP) which asks to generate a feasible schedule for a sports league such that the total travel distance incurred by all teams throughout the season is minimized. Throughout our three technical chapters a wide range of topics connected to the TTP are explored. We begin by considering the computational complexity of the problem. Despite existing results on the NP-hardness of TTP, the question of whether or not TTP is also APX-hard was an unexplored area in the literature. We prove the affirmative by constructing an L-reduction from (1,2)-TSP to TTP. To reach the desired result, we show that given an instance of TSP with a solution of cost K, we can construct an instance of TTP with a solution of cost at most 20m(m+1)cK where m = c(n-1)+1, n is the number of teams, and c > 5, c ∈ ℤ is fixed. On the other hand, we show that given a feasible schedule to the constructed TTP instance, we can recover a tour on the original TSP instance. The next chapter delves into a popular variation of the problem, the mirrored TTP, which has the added stipulation that the first and second half of the schedule have the same order of match-ups. Building upon previous techniques, we present an approximation algorithm for constructing a mirrored double round-robin schedule under the constraint that the number of consecutive home or away games is at most two. We achieve an approximation ratio on the order of 3/2 + O(1)/n. Lastly, we present a survey of local search methods for solving TTP and discuss the performance of these techniques on benchmark instances.en
dc.identifier.urihttp://hdl.handle.net/10012/18553
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecttraveling tournament problemen
dc.subjectsports schedulingen
dc.subjectapproximation algorithmsen
dc.titleThe Traveling Tournament Problemen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorCheriyan, Joseph
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bendayan_Salomon.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: