Query Complexity of Recursively Composed Functions

dc.contributor.authorAl-Dhalaan, Bandar
dc.date.accessioned2024-10-21T18:29:42Z
dc.date.available2024-10-21T18:29:42Z
dc.date.issued2024-10-21
dc.date.submitted2024-09-20
dc.description.abstractIn this work, we explore two well-studied notions of randomized query complexity; bounded-error randomized ($\R(f)$), and zero-error randomized ($\R_0(f)$). These have their natural analogues from the classical model of computation, $\R$ corresponding to BPP or ``Monte Carlo" algorithms and $\R_0$ to ZPP or ``Las Vegas" algorithms. For a query complexity measure $M$, one can define the composition limit of $M$ on $f$ by $M^*(f) = \lim_{k \to \infty} \sqrt[k]{M(f^k)}$. The composition limit is a useful way to understand the asymptotic complexity of a function with respect to a specific measure (e.g. if $M(f) = O(1)M(g)$, then $M^*(f) = M^*(g)$). We show that under the composition limit, Las Vegas algorithms can be reduced to Monte Carlo algorithms in the query complexity world. Specifically, $\R_0^*(f) = \max(\C^*(f), \R^*(f))$ for all possibly-partial boolean functions $f$. This has wide-reaching implications for the classical query complexity of boolean functions that are still open. For example, this result implies that any bounded-error algorithm for recursive 3-majority can be converted into a zero-error algorithm with no additional cost (i.e. $R^*(\text{3-MAJ}) = R_0^*(\text{3-MAJ})$. Furthermore, we explore one possible generalization of the recursive 3-majority problem itself, by analyzing 3-majority as a special case of a combinatorial game we call Denial Nim.
dc.identifier.urihttps://hdl.handle.net/10012/21156
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleQuery Complexity of Recursively Composed Functions
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentDavid R. Cheriton School of Computer Science
uws-etd.degree.disciplineComputer Science
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 year
uws.contributor.advisorBen-David, Shalev
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Al-Dhalaan_Bandar.pdf
Size:
339.32 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: