Reinforcement Learning for Solving Financial Problems

dc.contributor.authorWang, Lufan
dc.date.accessioned2024-11-26T20:37:37Z
dc.date.available2024-11-26T20:37:37Z
dc.date.issued2024-11-26
dc.date.submitted2024-11-21
dc.description.abstractThis thesis explores the application of reinforcement learning (RL) to address two impor- tant financial problems: risk management and optimal trade execution. In risk management, we aim to balance returns with associated risks. To achieve this, we propose an enhanced RL model that integrates a dynamic Conditional Value at Risk (CVaR) measure. By leveraging distorted probability measures, CVaR allows the RL agent to emphasize worst-case scenarios, ensuring that potential losses are accounted for while optimizing long-term returns. Our method substantially reduces the model’s training time by efficiently reusing computation results, significantly lowering computational overhead. Furthermore, it optimizes the balance between exploration and exploitation. This approach leads to more robust decision-making in uncertain environments and a better overall return. For optimal trade execution, we formulate a flexible RL-based framework capable of dynamically adjusting to changing market conditions. Our model not only replicates the results of Almgren-Chriss model in linear environments but also demonstrates superior performance in more complex, nonlinear scenarios where traditional methods like Almgren- Chriss face challenges.
dc.identifier.urihttps://hdl.handle.net/10012/21202
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleReinforcement Learning for Solving Financial Problems
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentDavid R. Cheriton School of Computer Science
uws-etd.degree.disciplineComputer Science
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorWan, Justin
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_Lufan.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: