Show simple item record

dc.contributor.authorFong, Norman
dc.date.accessioned2015-09-11 19:43:51 (GMT)
dc.date.available2015-09-11 19:43:51 (GMT)
dc.date.issued2015-09-11
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10012/9662
dc.description.abstractImpacts between over-height vehicles and steel bridges are common throughout North America and the resulting bridge damage is unpredictable and sudden. Heat straightening is an alternative to replacing steel members and mechanical straightening for repairs. In many cases, bridges remediated using heat straightening require fewer disruptions to traffic and lower repair costs compared to repairs replacing steel members. Heat straightening limitations and practices have been developed with American steel grades and climates in mind. Often heat straightening is described as an art as much as a science; this repair method has relied on experienced practitioners using heat straightening patterns designed to cause rotations or shortening in members. Heat straightening of impact-damaged steel bridges can be modelled with finite element analysis (FEA). Heat straightening is a thermo-mechanical process. Existing studies modelling heat straightening with FEA do not fully explain the modelling techniques and material parameters used. A workflow defining steps and material parameters can be used to facilitate modelling of impact and heat straightening on bridges. This study proposes a workflow using FEA to model the heat straightening of impact-damaged steel bridges. The proposed workflow will be used to study heat straightening of CSA 350W steel – a commonly used Canadian steel grade. The workflow is developed by investigating modelling techniques for impact and heat straightening separately. The developed finite element models include material parameters accounting for work hardening, thermal effects and strain-rate sensitivity of steel. The presented research demonstrates that the proposed workflow is viable for modelling impact and heat straightening of steel bridges. Although this study involved the application of the developed modelling techniques for a hypothetical bridge, the exercise has provided valuable insight into methods of expediting heat straightening repair and the modelling process. For instance, it has provided insight into the following: the introduction of jacking forces without causing mechanical straightening, the removal of plastically deformed stiffeners to reduce deformations, and the treatment of residual stresses from heat straightening.en
dc.language.isoenen
dc.publisherUniversity of Waterloo
dc.subjectSteelen
dc.subjectHeat Straighteningen
dc.subjectBridgesen
dc.subjectImpacten
dc.subjectFinite Element Analysisen
dc.titleFinite Element Analysis Workflow for Heat Straightening of Impact-Damaged Steel Bridgesen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programCivil Engineeringen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages