Show simple item record

dc.contributor.authorVamaraju, Kartik
dc.date.accessioned2015-09-01 16:34:29 (GMT)
dc.date.available2015-09-01 16:34:29 (GMT)
dc.date.issued2015-09-01
dc.date.submitted2015-08-28
dc.identifier.urihttp://hdl.handle.net/10012/9639
dc.description.abstractModulation is traditionally based on the idea that signal constellations should be deterministically constructed and known by the transmitter and receiver. Communication involves the transmitter randomly selecting from this known finite constellation. This is an example of Source Based Modulation (SBM). Media Based Modulation (MBM) is a departure from this paradigm. Tunable mirrors at the transmitter are used to establish independent channel realizations, the selection of which is used to encode information. The main topic of this thesis is communication involving a Single-Input Multiple-Output (SIMO) MBM system communicating over a static Rayleigh fading channel when there is perfect Channel State Information (CSI) at the receiver. Simulation results are presented to demonstrate various aspects of MBM system performance that are different from comparable SBM systems communicating over an Additive White Gaussian Noise (AWGN) channel. The application of channel coding to MBM is then discussed and simulation results involving the application of a Single Parity Check (SPC) symbol code applied to an MBM system are presented. The geometry of MBM constellations has a significant impact on coding gain, and consequently the coding gains with MBM are different then with SBM. Finally, a novel algorithm is developed to solve the Maximum Likelihood (ML) symbol detection algorithm for MBM using ideas from sphere decoding. Various methods of improving computation speed at a cost of introducing approximation error are also presented. An approximate ML symbol detection algorithm is presented in which the search radius is determined by the infinity norm and the optimal candidate selection is determined by the 2 norm. Simulation results demonstrate the reduction in search effort by using the approximate algorithm.en
dc.language.isoenen
dc.publisherUniversity of Waterloo
dc.titleSingle Input Multiple Output Media Based Modulationen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages