Show simple item record

dc.contributor.authorShantz, Michael 19:32:17 (GMT) 19:32:17 (GMT)
dc.description.abstractThe security of pairing-based cryptography can be reduced to the difficulty of the discrete logarithm problem (DLP) in finite fields of medium characteristic. The number field sieve is the best known algorithm for this problem. We look at a recent improvement to the number field sieve (NFS) by Joux and Pierrot that applies to finite field DLPs arising from elliptic curves used in pairing-based cryptography. We give specific parameter values for use with Miyaji-Nakabayashi-Takano curves offering 80-bits of security, and Barreto-Naehrig (BN) curves offering 128-bits of security. The running times of the corresponding NFS implementations are compared to the running times arising from prior versions of the NFS, showing that for BN curves the Joux-Pierrot version of the NFS is faster than the conventional version, but that BN curves still provide 128-bits of security. To get a better estimate on the number of relations that can be obtained during the sieving stage, we then analyze the distribution of the sizes of the product of the norms. Using this data, we give some guidelines for choosing which Joux-Pierrot polynomials to use for a specific DLP instance. We attempt to find a model for the distribution in order to further improve on the Joux-Pierrot version of the NFS. Finally, we prove some tighter bounds on the product of the norms.en
dc.publisherUniversity of Waterlooen
dc.subjectAlgebraic Number Theoryen
dc.subjectNumber Field Sieveen
dc.subjectPairing-Based Cryptographyen
dc.titleThe Number Field Sieve for Barreto-Naehrig Curves: Smoothness of Normsen
dc.typeMaster Thesisen
dc.subject.programCombinatorics and Optimizationen and Optimizationen
uws-etd.degreeMaster of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages