Show simple item record

dc.contributor.authorMadkour, Kareem 13:37:38 (GMT) 13:37:38 (GMT)
dc.description.abstractWith the continuous scaling down of dimensions in advanced technology nodes, process variations are getting worse for each new node. Process variations have a large influence on the quality and yield of the designed and manufactured circuits. There is a growing need for fast and efficient techniques to characterize and mitigate the effects of different sources of process variations on the design's performance and yield. In this thesis we have studied the various sources of systematic process variations and their effects on the circuit, and the various methodologies to combat systematic process variation in the design space. We developed abstract and accurate process variability models, that would model systematic intra-die variations. The models convert the variation in process into variation in electrical parameters of devices and hence variation in circuit performance (timing and leakage) without the need for circuit simulation. And as the analysis and mitigation techniques are studied in different levels of the design ow, we proposed a flow for combating the systematic process variation in nano-meter CMOS technology. By calculating the effects of variability on the electrical performance of circuits we can gauge the importance of the accurate analysis and model-driven corrections. We presented an automated framework that allows the integration of circuit analysis with process variability modeling to optimize the computer intense process simulation steps and optimize the usage of variation mitigation techniques. And we used the results obtained from using this framework to develop a relation between layout regularity and resilience of the devices to process variation. We used these findings to develop a novel technique for fast detection of critical failures (hotspots) resulting from process variation. We showed that our approach is superior to other published techniques in both accuracy and predictability. Finally, we presented an automated method for fixing the lithography hotspots. Our method showed success rate of 99% in fixing hotspots.en
dc.publisherUniversity of Waterlooen
dc.subjectProcess Variationen
dc.titleDFM Techniques for the Detection and Mitigation of Hotspots in Nanometer Technologyen
dc.typeDoctoral Thesisen
dc.subject.programElectrical and Computer Engineeringen and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages