Show simple item record

dc.contributor.authorPytel, Alexei 18:48:14 (GMT) 18:48:14 (GMT)
dc.description.abstractProcedural modeling of natural objects such as coastlines and terrains in combination with their characteristic erosion features involves integration of appropriate physical models with the procedural approach and culminates in the development of physically-based simulations. I have invented a modeling paradigm for designing this type of simulations in a way that generalizes formation of complex relationships between erosion features, such as the tributary relationship. My generalization uses self-organization to define where erosion occurs and how it propagates rather than emphasizing the exact mechanism of erosion and the details of what happens during each erosion event. Propagation of state changes due to self-organization can also lead to emergence of fractal character, which is essential for modeling of natural objects, without explicit fractal synthesis. I successfully apply my methodology to procedural modeling of dunes, coastlines, terrains that undergo hydraulic erosion due to channel networks, and 3D channel networks that form underground.en
dc.publisherUniversity of Waterlooen
dc.subjectprocedural modelingen
dc.subjectterrain modelingen
dc.subjecthydraulic erosionen
dc.titleErosion, Self-Organization, and Procedural Modelingen
dc.typeDoctoral Thesisen
dc.subject.programComputer Scienceen of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages