Show simple item record

dc.contributor.authorMuhammad, Pervaiz
dc.date.accessioned2015-01-12 14:02:42 (GMT)
dc.date.available2015-01-12 14:02:42 (GMT)
dc.date.issued2015-01-12
dc.date.submitted2014-12-05
dc.identifier.urihttp://hdl.handle.net/10012/9053
dc.description.abstractThe Mackenzie Basin is composed of eight sub-basins (North Mountains, Liard, Peace, Athabasca, Great Bear Low Plains, Great Slave and Arctic Red) and includes three large lakes (Great Bear Lake, Great Slave Lake, Lake Athabasca) and three deltas (Peace-Athabasca Delta, Slave Delta, Mackenzie Delta), one of which is the world’s largest inland delta (Peace-Athabasca Delta). Annually, the Mackenzie River experiences freeze-up during the fall season and ice break-up in the spring, having an important influence on the basin hydrology Furthermore, the type of ice break-up event is dependent on the magnitude of hydrological and meteorological conditions present. In light of the decreasing network of ground-based stations operated by the Water Survey of Canada on the Mackenzie River, this study explored the use of satellite remote sensing data to improve monitoring capabilities during the ice break-up period. MODIS Level 3 snow products (MOD/MYD10A1) and MODIS Level 1B radiance products (MOD/MYD02QKM) are used to monitor ice cover during the break-up period on the Mackenzie River, Canada, for 13 ice seasons (2001-2013). The initiation of the break-up period was observed to occur between days of year (DOY) 115-125 and end DOY 145-155, resulting in average melt durations of 30-40 days. Floating ice running northbound could therefore generate multiple periods of ice-on and ice-off observations at the same geographic location. At the headwaters of the Mackenzie River, ice break-up was thermodynamically driven as opposed to dynamically, as observed downstream near the Mackenzie Delta. MODIS observations also revealed that ice runs were largely influenced by channel morphology (islands and bars, confluences and channel constriction). MODIS was found to be a powerful tool for monitoring ice break-up processes at multiple geographical locations simultaneously along the Mackenzie River. Finally, MODIS was found to be a viable tool for estimating river ice velocity where channel morphology least affected river flow. Ice run velocities north of 66° N ranged from 1.21-1.84 ms-1.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectRiver iceen
dc.subjectremote sensingen
dc.subjectflooden
dc.subjectmackenzie riveren
dc.titleMonitoring Ice Break-Up on the Mackenzie River Using Remote Sensingen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programGeographyen
uws-etd.degree.departmentGeographyen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages