Show simple item record

dc.contributor.authorMiranda, Erik
dc.date.accessioned2014-12-15 14:58:08 (GMT)
dc.date.available2014-12-15 14:58:08 (GMT)
dc.date.issued2014-12-15
dc.date.submitted2014
dc.identifier.urihttp://hdl.handle.net/10012/8992
dc.description.abstractHearing is one of our major senses. In addition to being, arguably, our primary form of communication, it affects how we perceive the world around us. Accurate acoustic simulation can complement graphical simulation systems, providing users with more immersive and believable environments. Furthermore, sound can assist users in localizing objects within space, and it has been shown to improve the perceived quality of visuals. Many of the audio properties that our brain subconsciously keys upon are artifacts inscribed into the signal by the environment as the sound propagates from the source to the listener. Diffraction, or the bending of sound around objects, is an important mode of transmission and a key source of reverberation in an audio signal. However, many current acoustic propagation simulation systems do not properly model diffraction. This work proposes a new method for performing the simulation of diffraction. Our formulation aims to provide accurate results across the frequency spectrum. Accordingly, we avoid using approximative models of diffraction, such as the Unified Theory of Diffraction, which are ubiquitous in the field, but lead to inaccurate results particularly in the lower frequencies. Furthermore, our algorithm can provide a time-domain solution for reverberant sounds and is controllable for stylistic adjustments. In order to evaluate our method, we compare our results against measured and experimental results reported in the literature.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectacousticsen
dc.subjectray tracingen
dc.subjectmonte carloen
dc.subjectdiffractionen
dc.subjectcomputer graphicsen
dc.titleModelling Acoustic Propagation with Dominant Pathsen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeMaster of Mathematicsen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages