Show simple item record

dc.contributor.authorEmbaye, Samuel 17:17:37 (GMT) 17:17:37 (GMT)
dc.description.abstractIn using automatic differentiation (AD) for Hessian computation, efficiency can be achieved by exploiting the sparsity existing in the derivative matrix. However, in the case where the Hessian is dense, this cannot be done and the space requirements to compute the Hessian can become very large. But if the underlying function can be expressed in a structured form, a “deeper” sparsity can be exploited to minimize the space requirement. In this thesis, we provide a summary of automatic differentiation (AD) techniques, as applied to Jacobian and Hessian matrix determination, as well as the graph coloring techniques involved in exploiting their sparsity. We then discuss how structure in the underlying function can be used to greatly improve efficiency in gradient/Jacobian computation. We then propose structured methods for Hessian computation that substantially reduce the space required. Finally, we propose a method for Hessian computation where the structure of the function is not provided.en
dc.publisherUniversity of Waterlooen
dc.subjectautomatic differentiationen
dc.titleThe determination of structured Hessian matrices via automatic differentiationen
dc.typeMaster Thesisen
dc.subject.programCombinatorics and Optimizationen and Optimizationen
uws-etd.degreeMaster of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages