UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

SiGe/Si Heterojunction Internal Photoemission Separate Absorption and Multiplication Avalanche Middle Wavelength Infrared Photodiode

Loading...
Thumbnail Image

Date

2014-08-29

Authors

Zhang, Yuan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Separate-absorption-and-multiplication (SAM) Avalanche PhotoDiode (APD) is widely accepted in optical communication systems due to the presence of large photocurrent gain. In this thesis, a designed SAM middle wavelength infrared avalanche photo detector operating at room temperature is presented. The designed photo detector is based on SiGe/Si heterojunction internal photoemission (HIP) and it is compatible with CMOS technology. The detection mechanism of the SiGe/Si HIP detector is infrared absorption in the degenerately doped p+-SiGe layer followed by internal photoemission of photoexcited holes over the heterojunction barrier. Silvaco TCAD tool is utilized to implement the simulation of this designed SiGe/Si HIP SAM APD. The structure of the designed APD is evaluated by simulation tools, the simulation results of the dark current, the current under illumination, photo-generation rate, recombination rate, and electrical field are shown in this thesis. The relation between dark current and generation-recombination is discussed at the end of this thesis.

Description

Keywords

SAM APD, Infrared, Room Temperature, SiGe/Si HIP, Silvaco TCAD, photo-generation rate, recombination rate, and dark current, etc.

LC Keywords

Citation