Show simple item record

dc.contributor.authorAlarfaj, Omar
dc.date.accessioned2014-08-29 13:13:34 (GMT)
dc.date.available2014-08-29 13:13:34 (GMT)
dc.date.issued2014-08-29
dc.date.submitted2014-08-28
dc.identifier.urihttp://hdl.handle.net/10012/8738
dc.description.abstractThe use of DC microgrids is a promising concept that could improve power system reliability and stability in the future. The advantages of microgrids in general include an increase in energy efficiency through lowered energy transmission and operational costs, a reduced carbon footprint through the integration of renewable energy resources, and improvements in power quality and availability to end users through the use of advanced control techniques. DC microgrids have the potential to provide additional advantages, including decreasing interconnection conversion levels of distributed energy resources and energy storage systems, and preventing the propagation of power system disturbances. Power system research groups around the world are investigating the DC microgrid concept through simulation platforms and experimental setups. Several strategies have been proposed for the control of DC microgrids, including hierarchical, distributed, and intelligent control strategies. In this work, PSCAD/EMTDC simulation environment was used for the modeling and simulation of a DC microgrid. A power management strategy was then implemented in order to ensure voltage regulation and seamless transition between grid-connected and isolated modes. The strategy is based on an autonomous distributed control scheme in which the DC bus voltage level is used as an indicator of the power balance in the microgrid. The autonomous control strategy does not rely on communication links or a central controller, resulting in reduced costs and enhanced reliability. As part of the control strategy, an adaptive droop control technique is proposed for PV sources in order to maximize the utilization of power available from these sources while ensuring acceptable levels of system voltage regulation. These goals are achieved by avoiding the curtailment of renewable energy until violation of the voltage regulation limit occurs. The adaptive droop control then curtails the output power of the PV sources and, at the same time, restores the DC voltage level to within an acceptable tolerance range.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectMicrogriden
dc.subjectDC systemsen
dc.subjectAdaptive droopen
dc.subjectPSCAD/EMTDCen
dc.subjectElectrical and Computer Engineeringen
dc.titleModeling and Control of Low-Voltage DC Microgrid With Photovoltaic Energy Resourcesen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages