Show simple item record

dc.contributor.authorYang, Maofeng
dc.date.accessioned2014-07-08 13:00:00 (GMT)
dc.date.available2014-11-06 06:30:07 (GMT)
dc.date.issued2014-07-08
dc.date.submitted2014
dc.identifier.urihttp://hdl.handle.net/10012/8561
dc.description.abstractHydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (∆Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level ∆Vt simulation. Besides, a ∆Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The ∆Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a ∆Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectamorphous siliconen
dc.subjectthin film transistoren
dc.subjectorganic light emitting diodeen
dc.subjectdisplayen
dc.subjectdevice modelen
dc.subjectsimulationen
dc.subjectpixel circuiten
dc.subjectagingen
dc.subjectcompensationen
dc.titleAmorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displaysen
dc.typeDoctoral Thesisen
dc.pendingfalse
dc.subject.programElectrical and Computer Engineeringen
dc.description.embargoterms4 monthsen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages