Show simple item record

dc.contributor.authorAn, Wenyong 17:15:22 (GMT) 17:15:22 (GMT)
dc.description.abstractA family of parameterized Thue equations is defined as F_{t,s,...}(X, Y ) = m, m ∈ Z where F_{t,s,...}(X,Y) is a form in X and Y with degree greater than or equal to 3 and integer coefficients that are parameterized by t, s, . . . ∈ Z. A variety of these families have been studied by different authors. In this thesis, we study the following families of Thue inequalities |sx3 −tx2y−(t+3s)xy2 −sy3|≤2t+3s, |sx4 −tx3y−6sx2y2 +txy3 +sy4|≤6t+7s, |sx6 − 2tx5y − (5t + 15s)x4y2 − 20sx3y3 + 5tx2y4 +(2t + 6s)xy5 + sy6| ≤ 120t + 323s, where s and t are integers. The forms in question are “simple”, in the sense that the roots of the underlying polynomials can be permuted transitively by automorphisms. With this nice property and the hypergeometric functions, we construct sequences of good approximations to the roots of the underlying polynomials. We can then prove that under certain conditions on s and t there are upper bounds for the number of integer solutions to the above Thue inequalities.en
dc.publisherUniversity of Waterlooen
dc.subjectParameterized Diophantine equationen
dc.subjectThue equation and inequalityen
dc.subjecthypergeometric methoden
dc.titleFamilies of Thue Inequalities with Transitive Automorphismsen
dc.typeDoctoral Thesisen
dc.subject.programPure Mathematicsen Mathematicsen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages