Uniform Mixing on Cayley Graphs over Z_3^d

Loading...
Thumbnail Image

Date

2014-05-22

Authors

Zhan, Hanmeng

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis investigates uniform mixing on Cayley graphs over Z_3^d. We apply Mullin's results on Hamming quotients, and characterize the 2(d+2)-regular connected Cayley graphs over Z_3^d that admit uniform mixing at time 2pi/9. We generalize Chan's construction on the Hamming scheme H(d,2) to the scheme H(d,3), and find some distance graphs of the Hamming graph H(d,3) that admit uniform mixing at time 2pi/3^k for any k≥2. To restrict the mixing time, we derive a sufficient and necessary condition for uniform mixing to occur on a Cayley graph over Z_3^d at a given time. Using this, we obtain three results. First, we give a lower bound of the valency of a Cayley graph over Z_3^d that could admit uniform mixing at some time. Next, we prove that no Hamming quotient H(d,3)/<1> admits uniform mixing at time earlier than 2pi/9. Finally, we explore the connected Cayley graphs over Z_3^3 with connected complements, and show that five complementary graphs admit uniform mixing with earliest mixing time 2pi/9.

Description

Keywords

Quantum Walks, Uniform Mixing

LC Subject Headings

Citation