UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

On 2-crossing-critical graphs with a V8-minor

Loading...
Thumbnail Image

Date

2014-05-22

Authors

Arroyo Guevara, Alan Marcelo

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of a graph. A graph $G$ is $k$-crossing-critical if it has crossing number at least $k$, and any subgraph of $G$ has crossing number less than $k$. A consequence of Kuratowski's theorem is that 1-critical graphs are subdivisions of $K_{3,3}$ and $K_{5}$. The graph $V_{2n}$ is a $2n$-cycle with $n$ diameters. Bokal, Oporowski, Richter and Salazar found in \cite{bigpaper} all the critical graphs except the ones that contain a $V_{8}$ minor and no $V_{10}$ minor. We show that a 4-connected graph $G$ has crossing number at least 2 if and only if for each pair of disjoint edges there are two disjoint cycles containing them. Using a generalization of this result we found limitations for the 2-crossing-critical graphs remaining to classify. We showed that peripherally 4-connected 2-crossing-critical graphs have at most 4001 vertices. Furthermore, most 3-connected 2-crossing-critical graphs are obtainable by small modifications of the peripherally 4-connected ones.

Description

Keywords

graph theory, crossing numbers, disjoint paths, crossing critical

LC Keywords

Citation