Show simple item record

dc.contributor.authorBaysal, Olga 18:44:09 (GMT) 18:44:09 (GMT)
dc.description.abstractSoftware practitioners make technical and business decisions based on the understanding they have of their software systems. This understanding is grounded in their own experiences, but can be augmented by studying various kinds of development artifacts, including source code, bug reports, version control meta-data, test cases, usage logs, etc. Unfortunately, the information contained in these artifacts is typically not organized in the way that is immediately useful to developers’ everyday decision making needs. To handle the large volumes of data, many practitioners and researchers have turned to analytics — that is, the use of analysis, data, and systematic reasoning for making decisions. The thesis of this dissertation is that by employing software analytics to various development tasks and activities, we can provide software practitioners better insights into their processes, systems, products, and users, to help them make more informed data-driven decisions. While quantitative analytics can help project managers understand the big picture of their systems, plan for its future, and monitor trends, qualitative analytics can enable developers to perform their daily tasks and activities more quickly by helping them better manage high volumes of information. To support this thesis, we provide three different examples of employing software analytics. First, we show how analysis of real-world usage data can be used to assess user dynamic behaviour and adoption trends of a software system by revealing valuable information on how software systems are used in practice. Second, we have created a lifecycle model that synthesizes knowledge from software development artifacts, such as reported issues, source code, discussions, community contributions, etc. Lifecycle models capture the dynamic nature of how various development artifacts change over time in an annotated graphical form that can be easily understood and communicated. We demonstrate how lifecycle models can be generated and present industrial case studies where we apply these models to assess the code review process of three different projects. Third, we present a developer-centric approach to issue tracking that aims to reduce information overload and improve developers’ situational awareness. Our approach is motivated by a grounded theory study of developer interviews, which suggests that customized views of a project’s repositories that are tailored to developer-specific tasks can help developers better track their progress and understand the surrounding technical context of their working environments. We have created a model of the kinds of information elements that developers feel are essential in completing their daily tasks, and from this model we have developed a prototype tool organized around developer-specific customized dashboards. The results of these three studies show that software analytics can inform evidence-based decisions related to user adoption of a software project, code review processes, and improved developers’ awareness on their daily tasks and activities.en
dc.publisherUniversity of Waterlooen
dc.subjectSoftware analyticsen
dc.subjectsoftware developmenten
dc.subjectpersonalized developmenten
dc.subjectsituational awarenessen
dc.subjectcode reviewen
dc.subjectmining software repositoriesen
dc.titleSupporting Development Decisions with Software Analyticsen
dc.typeDoctoral Thesisen
dc.subject.programComputer Scienceen of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages