Show simple item record

dc.contributor.authorEl Massad, Mohamed
dc.date.accessioned2014-04-22 13:57:24 (GMT)
dc.date.available2014-04-22 13:57:24 (GMT)
dc.date.issued2014-04-22
dc.date.submitted2014
dc.identifier.urihttp://hdl.handle.net/10012/8335
dc.description.abstractRecent work in the area of computer hardware security introduced a number of interesting computational problems in the context of directed acyclic graphs (DAGs). In this thesis, we pick one of these problems, circuit obfuscation --- a combinatorial optimization problem --- and study its computational complexity. First, we prove that the problem is \cnph. Next, we show it to be in the class of MAX-SNP optimization problems, which means it is inapproximable within a certain constant (2.08) unless P=NP. We then use a reduction from the maximum common edge subgraph problem to prove a lower bound on the absolute error guarantee achievable for the problem by a polynomial-time algorithm. Given that the decision version of the problem is in NP, we investigate the possibility of efficiently solving the problem using a SAT solver and report on our results. Finally, we study a slightly modified version of the problem underlying a generalized hardware security technique and prove it to be NP-hard as well.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleOn the Complexity of the Circuit Obfuscation Problem for Split Manufacturingen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages