Show simple item record

dc.contributor.authorTaniguchi, Yoshihiro 15:32:25 (GMT) 15:32:25 (GMT)
dc.description.abstractLemieux recently proposed a new approach that studies randomized quasi-Monte Carlothrough dependency concepts. By analyzing the dependency structure of a rank-1 lattice,Lemieux proposed a copula-based criterion with which we can find a “good generator” for the lattice. One drawback of the criterion is that it assumes that a given function can be well approximated by a bilinear function. It is not clear if this assumption holds in general. In this thesis, we assess the validity and robustness of the copula-based criterion. We dothis by working with bilinear functions, some practical problems such as Asian option pricing, and perfectly non-bilinear functions. We use the quasi-regression technique to study how bilinear a given function is. Beside assessing the validity of the bilinear assumption, we proposed the bilinear regression based criterion which combines the quasi-regression and the copula-based criterion. We extensively test the two criteria by comparing them to other well known criteria, such as the spectral test through numerical experiments. We find that the copula criterion can reduce the error size by a factor of 2 when the functionis bilinear. We also find that the copula-based criterion shows competitive results evenwhen a given function does not satisfy the bilinear assumption. We also see that our newly introduced BR criterion is competitive compared to well-known criteria.en
dc.publisherUniversity of Waterlooen
dc.subjectQuasi-Monte carloen
dc.subjectVariance Reductionen
dc.subjectLattice Ruleen
dc.titleDependence concepts and selection criteria for lattice rulesen
dc.typeMaster Thesisen
dc.subject.programStatisticsen and Actuarial Scienceen
uws-etd.degreeMaster of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages