Query Answering over Functional Dependency Repairs
Loading...
Date
2013-09-23T15:48:49Z
Authors
Galiullin, Artur
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Inconsistency often arises in real-world databases and, as a result, critical queries over dirty data may lead users to make ill-informed decisions. Functional dependencies (FDs) can be used to specify intended semantics of the underlying data and aid with the cleaning task. Enumerating and evaluating all the possible repairs to FD violations is infeasible, while approaches that produce a single repair or attempt to isolate the dirty portion of data are often too destructive or constraining. In this thesis, we leverage a recent advance in data cleaning that allows sampling from a well-defined space of reasonable repairs, and provide the user with a data management tool that gives uncertain query answers over this space. We propose a framework to compute probabilistic query answers as though each repair sample were a possible world. We show experimentally that queries over many possible repairs produce results that are more useful than other approaches and that our system can scale to large datasets.
Description
Keywords
Data Cleaning, Probabilistic Databases