Show simple item record

dc.contributor.authorYan, Zhuangqing
dc.date.accessioned2013-08-29 20:46:43 (GMT)
dc.date.available2015-05-01 05:30:13 (GMT)
dc.date.issued2013-08-29T20:46:43Z
dc.date.submitted2013
dc.identifier.urihttp://hdl.handle.net/10012/7771
dc.description.abstractOrganic semiconductors are envisioned to have widespread applications in flexible displays, radio-frequency identification (RFID) tags, bio- and chem-sensors, as well as organic solar cells. Polymer semiconductors are particularly suitable for the low-cost manufacture of organic electronics using printing techniques due to their excellent solution processability and mechanical properties. This work focuses on the development of two novel building blocks, IBDF and DTA, which can be used for the construction of high performance organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Two copolymers, P6-IBDF-T and P5-IBDF-T, and a homopolymer P6-IBDF were prepared using the IBDF building block. Copolymer P6-IBDF-T has been prepared via the Stille-coupling polymerization. This polymer exhibits a small band gap of 1.36 eV with HOMO/LUMO energy level of -5.69 eV/-4.43 eV. P6-IBDF-T showed stable electron transport performance in encapsulated thin film transistors and ambipolar transport performance in non-encapsulated TFTs. Balanced hole/electron mobilities of up to 8.2 ×10-3/1.0 ×10-2 cm2V-1s-1 was achieved in bottom-contact, bottom-gate organic thin film transistors. In addition, the broad absorption of the polymer over the UV-Vis range suggested that this polymer is suitable for applications in solar cells. The effect of conjugation on mobility and UV-vis spectra of the polymer was studied by comparing P5-IBDF-T with P6-IBDF-T. The ideal of indirect electron transition was proposed to explain the difference between UV-Vis light absorption spectra for these two polymers. DTA building block was used to construct four D-A copolymers, namely PDTA-T, PDTA-BT, PDAT-BTV, and PDTA-TT. These polymers were characterized by UV-Vis, CV, DSC, TGA, AFM and XRD. Device performance was also investigated on OTFTs. The device performance of DTA based polymer increased as the area of electron donor increase from T in PDTA-T to BTV in PDTA-BTV. PDTA-BTV exhibits hole mobility of 1.3×10-3 cm2 V-1 s-1 with Ion/Ioff value of ~103-4 in bottom-contact, bottom-gate organic thin film transistors. All DTA based copolymers exhibited small optical bandgaps (1.18 – 1.27 eV) and required none or moderate thermal treatment during fabrication process. These make them promising candidates for cost-effective OPV applications.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectpolymer semiconductoren
dc.subjectorganic thin film transistoren
dc.titleDevelopment of New Building Blocks for Constructing Novel Polymer Semiconductors for Organic Thin Film Transistorsen
dc.typeMaster Thesisen
dc.comment.hiddenPart of the work included in this thesis has been published on RSC journal. Authors of RSC books and journal articles can reproduce material (for example a figure) from the RSC publication in a non-RSC publication, including theses, without formally requesting permission providing that the correct acknowledgement is given to the RSC publication. This permission extends to reproduction of large portions of text or the whole article or book chapter when being reproduced in a thesis.en
dc.pendingtrueen
dc.subject.programChemical Engineeringen
dc.description.embargoterms1 yearen
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages