Show simple item record

dc.contributor.authorLi, Kai 19:07:19 (GMT) 19:07:19 (GMT)
dc.description.abstractBecause of its high theoretical specific capacity (4200mAh/g) and natural abundance (2nd most abundant element on earth), silicon is considered a promising anode candidate for high energy density lithium-ion batteries. However, the dramatic volume changes (up to 400%) that occur during lithiation/delithiation and the relative low electrical conductivity of silicon prevent the implementation of this material. In this work, a nano-silicon/polyaniline/reduced graphene oxide composite was synthesized via a two-step process: in-situ polymerization of polyaniline (PANi) in the presence of nano-silicon followed by combination of the prepared n-Si/PANi binary composite with reduced graphene oxide (RGO), to form a n-Si/PANi/RGO composite. Electron microscopy reveals the unique nano-architecture of the n-Si/PANi/RGO composite: silicon nanoparticles are well dispersed within a PANi matrix, which in turn is anchored to the surface of RGO sheets. The n-Si/PANi/RGO ternary composite delivered an initial capacity of 3259 mAh/g and 83.5% Coulombic efficiency. The new composite displayed better rate performance and capacity recovery than either nano-Si or n-Si/PANi. Structural and morphological studies combined with AC impedance analysis suggest that the n-Si/PANi/RGO composite has higher electrical conductivity than the other two component materials, yielding better performance at high current densities or C rates. The good rate performance, high initial specific capacity and stable Coulombic efficiency of n-Si/PANi/RGO make it a promising anode material for high energy density lithium-ion batteries.en
dc.publisherUniversity of Waterlooen
dc.subjectLithium-ion Batteriesen
dc.subjectreduced graphene oxideen
dc.titleA Study on Nano-Si/Polyaniline/Reduced Graphene Oxide Composite Anode for Lithium-Ion Batteriesen
dc.typeMaster Thesisen
dc.subject.programChemical Engineeringen Engineeringen
uws-etd.degreeMaster of Applied Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages