Show simple item record

dc.contributor.authorFung, Carol
dc.date.accessioned2013-04-30 17:42:12 (GMT)
dc.date.available2013-04-30 17:42:12 (GMT)
dc.date.issued2013-04-30T17:42:12Z
dc.date.submitted2013
dc.identifier.urihttp://hdl.handle.net/10012/7490
dc.description.abstractIn recent years network intrusions have become a severe threat to the privacy and safety of computer users. Recent cyber attacks compromise a large number of hosts to form botnets. Hackers not only aim at harvesting private data and identity information from compromised nodes, but also use the compromised nodes to launch attacks such as distributed denial-of-service (DDoS) attacks. As a counter measure, Intrusion Detection Systems (IDS) are used to identify intrusions by comparing observable behavior against suspicious patterns. Traditional IDSs monitor computer activities on a single host or network traffic in a sub-network. They do not have a global view of intrusions and are not effective in detecting fast spreading attacks, unknown, or new threats. In turn, they can achieve better detection accuracy through collaboration. An Intrusion Detection Network (IDN) is such a collaboration network allowing IDSs to exchange information with each other and to benefit from the collective knowledge and experience shared by others. IDNs enhance the overall accuracy of intrusion assessment as well as the ability to detect new intrusion types. Building an effective IDN is however a challenging task. For example, adversaries may compromise some IDSs in the network and then leverage the compromised nodes to send false information, or even attack others in the network, which can compromise the efficiency of the IDN. It is, therefore, important for an IDN to detect and isolate malicious insiders. Another challenge is how to make efficient intrusion detection assessment based on the collective diagnosis from other IDSs. Appropriate selection of collaborators and incentive-compatible resource management in support of IDSs' interaction with others are also key challenges in IDN design. To achieve efficiency, robustness, and scalability, we propose an IDN architecture and especially focus on the design of four of its essential components, namely, trust management, acquaintance management, resource management, and feedback aggregation. We evaluate our proposals and compare them with prominent ones in the literature and show their superiority using several metrics, including efficiency, robustness, scalability, incentive-compatibility, and fairness. Our IDN design provides guidelines for the deployment of a secure and scalable IDN where effective collaboration can be established between IDSs.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectIntrusion Detection Networken
dc.subjectCollaboration networken
dc.subjectComputer Securityen
dc.subjectNetwork Managementen
dc.subjectTrust Managementen
dc.subjectResource Managementen
dc.subjectGame Theoryen
dc.subjectBayesian Decisionen
dc.titleDesign and Management of Collaborative Intrusion Detection Networksen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages