Show simple item record

dc.contributor.authorLin, Jonathan Feng-Shun
dc.date.accessioned2013-01-10 17:37:21 (GMT)
dc.date.available2013-01-10 17:37:21 (GMT)
dc.date.issued2013-01-10T17:37:21Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/7191
dc.description.abstractCurrent physiotherapy practice relies on visual observation of the patient for diagnosis and assessment. The assessment process can potentially be automated to improve accuracy and reliability. This thesis proposes a method to recover patient joint angles and automatically extract movement profiles utilizing small and lightweight body-worn sensors. Joint angles are estimated from sensor measurements via the extended Kalman filter (EKF). Constant-acceleration kinematics is employed as the state evolution model. The forward kinematics of the body is utilized as the measurement model. The state and measurement models are used to estimate the position, velocity and acceleration of each joint, updated based on the sensor inputs from inertial measurement units (IMUs). Additional joint limit constraints are imposed to reduce drift, and an automated approach is developed for estimating and adapting the process noise during on-line estimation. Once joint angles are determined, the exercise data is segmented to identify each of the repetitions. This process of identifying when a particular repetition begins and ends allows the physiotherapist to obtain useful metrics such as the number of repetitions performed, or the time required to complete each repetition. A feature-guided hidden Markov model (HMM) based algorithm is developed for performing the segmentation. In a sequence of unlabelled data, motion segment candidates are found by scanning the data for velocity-based features, such as velocity peaks and zero crossings, which match the pre-determined motion templates. These segment potentials are passed into the HMM for template matching. This two-tier approach combines the speed of a velocity feature based approach, which only requires the data to be differentiated, with the accuracy of the more computationally-heavy HMM, allowing for fast and accurate segmentation. The proposed algorithms were verified experimentally on a dataset consisting of 20 healthy subjects performing rehabilitation exercises. The movement data was collected by IMUs strapped onto the hip, thigh and calf. The joint angle estimation system achieves an overall average RMS error of 4.27 cm, when compared against motion capture data. The segmentation algorithm reports 78% accuracy when the template training data comes from the same participant, and 74% for a generic template.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectPhysiotherapyen
dc.subjectKalman filteren
dc.subjectHidden Markov modelen
dc.subjectInertial measurement unitsen
dc.subjectForward kinematicsen
dc.subjectSegmentation and identificationen
dc.titleAutomated Rehabilitation Exercise Motion Trackingen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages