Show simple item record

dc.contributor.authorGuay-Paquet, Mathieu
dc.date.accessioned2012-09-21 15:43:44 (GMT)
dc.date.available2012-09-21 15:43:44 (GMT)
dc.date.issued2012-09-21T15:43:44Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/7005
dc.description.abstractWe develop algebraic methods to solve join-cut equations, which are partial differential equations that arise in the study of permutation factorizations. Using these techniques, we give a detailed study of the recently introduced monotone Hurwitz numbers, which count factorizations of a given permutation into a fixed number of transpositions, subject to some technical conditions known as transitivity and monotonicity. Part of the interest in monotone Hurwitz numbers comes from the fact that they have been identified as the coefficients in a certain asymptotic expansion related to the Harish-Chandra-Itzykson-Zuber integral, which comes from the theory of random matrices and has applications in mathematical physics. The connection between random matrices and permutation factorizations goes through representation theory, with symmetric functions in the Jucys-Murphy elements playing a key role. As the name implies, monotone Hurwitz numbers are related to the more classical Hurwitz numbers, which count permutation factorizations regardless of monotonicity, and for which there is a significant body of work. Our results for monotone Hurwitz numbers are inspired by similar results for Hurwitz numbers; we obtain a genus expansion for the related generating functions, which yields explicit formulas and a polynomiality result for monotone Hurwitz numbers. A significant difference between the two cases is that our methods are purely algebraic, whereas the theory of Hurwitz numbers relies on some fairly deep results in algebraic geometry. Despite our methods being algebraic, it seems that there should be a connection between monotone Hurwitz numbers and geometry, although this is currently missing. We give some evidence for this connection by identifying some of the coefficients in the monotone Hurwitz genus expansion with coefficients in the classical Hurwitz genus expansion known to be Hodge integrals over the moduli space of curves.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectCombinatoricsen
dc.subjectEnumerationen
dc.titleAlgebraic Methods and Monotone Hurwitz Numbersen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programCombinatorics and Optimizationen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages