Show simple item record

dc.contributor.authorHolloway, Catherine
dc.date.accessioned2012-08-21 13:36:10 (GMT)
dc.date.available2012-08-21 13:36:10 (GMT)
dc.date.issued2012-08-21T13:36:10Z
dc.date.submitted2012-08-01
dc.identifier.urihttp://hdl.handle.net/10012/6865
dc.description.abstractIn order for quantum key distribution (QKD) to move from the lab to widespread adoption, it will need to be compatible with existing infrastructure. To that end, I demonstrate an implementation of QKD with entangled photons on active, standard telecommunications ber. By using a wavelength outside of the conventional band used by telecommunications tra c, I achieve minimal disruption to either the quantum or classical signals. In an attempt to extend the reach of QKD with entangled photons I studied the parameters of these systems. I developed a model for the number of measured two-fold coincidences that maximizes the secure key rate (SKR), for any combination of system parameters, using a symbolic regression algorithm based on simulated data. I validated this model against experimental data, and demonstrated its usefulness by applying it to simulations of QKD between the ground and a satellite and in optical bers. Finally, I worked on a step towards a new entangled photon source that is a hybrid between visible and telecommunications wavelengths by building a hybrid single photon source.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectQuantum Key Distributionen
dc.subjectQuantum Informationen
dc.titleTowards Real-World Adoption of Quantum Key Distribution using Entangled Photonsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programPhysicsen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages