Show simple item record

dc.contributor.authorAckerman, Margareta
dc.date.accessioned2012-07-20 19:42:38 (GMT)
dc.date.available2012-07-20 19:42:38 (GMT)
dc.date.issued2012-07-20T19:42:38Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/6824
dc.description.abstractClustering is a central unsupervised learning task with a wide variety of applications. Unlike in supervised learning, different clustering algorithms may yield dramatically different outputs for the same input sets. As such, the choice of algorithm is crucial. When selecting a clustering algorithm, users tend to focus on cost-related considerations, such as running times, software purchasing costs, etc. Yet differences concerning the output of the algorithms are a more primal consideration. We propose an approach for selecting clustering algorithms based on differences in their input-output behaviour. This approach relies on identifying significant properties of clustering algorithms and classifying algorithms based on the properties that they satisfy. We begin with Kleinberg's impossibility result, which relies on concise abstract properties that are well-suited for our approach. Kleinberg showed that three specific properties cannot be satisfied by the same algorithm. We illustrate that the impossibility result is a consequence of the formalism used, proving that these properties can be formulated without leading to inconsistency in the context of clustering quality measures or algorithms whose input requires the number of clusters. Combining Kleinberg's properties with newly proposed ones, we provide an extensive property-base classification of common clustering paradigms. We use some of these properties to provide a novel characterization of the class of linkage-based algorithms. That is, we distil a small set of properties that uniquely identify this family of algorithms. Lastly, we investigate how the output of algorithms is affected by the addition of small, potentially adversarial, sets of points. We prove that given clusterable input, the output of $k$-means is robust to the addition of a small number of data points. On the other hand, clusterings produced by many well-known methods, including linkage-based techniques, can be changed radically by adding a small number of elements.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectClusteringen
dc.subjectTheoretical foundationsen
dc.titleTowards Theoretical Foundations of Clusteringen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages