Show simple item record

dc.contributor.authorDuan, Jin
dc.date.accessioned2012-07-20 13:59:58 (GMT)
dc.date.available2012-07-20 13:59:58 (GMT)
dc.date.issued2012-07-20T13:59:58Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/6823
dc.description.abstractThe plant growth-promoting bacterium (PGPB) Pseudomonas putida UW4, previously isolated from the rhizosphere of common reeds growing on the campus of University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentration of salt, cold, heavy metals, drought and phytopathogens. The known mechanisms used by P. putida UW4 to promote plant growth include 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA) synthesis and siderophore production. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. putida UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,431 predicted protein-coding sequences that occupy 87.4% of the genome. Nineteen genomic islands were predicted and thirty one complete putative insertion sequences were identified. Genome analyses were conducted in order to better characterize the general features of the UW4 genome. Genes potentially involved in plant growth promotion such as IAA biosynthesis, trehalose production, siderophore production, and acetoin synthesis were identified, which will facilitate a better understanding of the mechanisms of plant-microbe interactions. Moreover, genes that contribute to the environmental fitness of UW4 were also determined including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Central metabolic pathways helped elucidate the physiological roles of diverse metabolites of UW4. Unexpectedly, whole-genome comparison with other completely sequenced Pseudomonas sp. revealed that UW4 is more similar to the fluorescens group rather than to the putida group. More surprisingly, a putative type III secretion system (T3SS) was found in the UW4 genome, and T3SS was thought to be essential for bacterial pathogenesis. Although putative T3SS was observed in other non-pathogenic Pseudomonas spp. previously, this is the first report indicating that a T3SS in a Pseudomonas sp. is highly similar to the one from Salmonella spp.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectPlant Growth-Promoting Bacteriumen
dc.subjectGenome Sequencingen
dc.subjectPseudomonasen
dc.titleSequence analysis of the genome of the plant growth-promoting bacterium Pseudomonas putida UW4en
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programBiologyen
uws-etd.degree.departmentBiologyen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages