Show simple item record

dc.contributor.authorDhaliwal, Gurjot
dc.date.accessioned2012-01-23 16:54:53 (GMT)
dc.date.available2012-01-23 16:54:53 (GMT)
dc.date.issued2012-01-23T16:54:53Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/6500
dc.description.abstractA workforce plan states the number of workers required at any point in time. Efficient workforce plans can help companies achieve their organizational goals while keeping costs low. In ever increasing globalized work market, companies need a competitive edge over their competitors. A competitive edge can be achieved by lowering costs. Labour costs can be one of the significant costs faced by the companies. Efficient workforce plans can provide companies with a competitive edge by finding low cost options to meet customer demand. This thesis studies the problem of determining the required number of workers when there are two categories of workers. Workers belonging to the first category are trained to work on one type of task (called Specialized Workers); whereas, workers in the second category are trained to work in all the tasks (called Flexible Workers). This thesis makes the following three main contributions. First, it addresses this problem when the demand is deterministic and stochastic. Two different models for deterministic demand cases have been proposed. To study the effects of uncertain demand, techniques of Robust Optimization and Robust Mathemat- ical Programming were used. The thesis also investigates methods to solve large instances of this problem; some of the instances we considered have more than 600,000 variables and constraints. As most of the variables are integer, and objective function is nonlinear, a commercial solver was not able to solve the problem in one day. Initially, we tried to solve the problem by using Lagrangian relaxation and Outer approximation techniques but these approaches were not successful. Although effective in solving small problems, these tools were not able to generate a bound within run time limit for the large data set. A number of heuristics were proposed using projection techniques. Finally this thesis develops a genetic algorithm to solve large instances of this prob- lem. For the tested population, the genetic algorithm delivered results within 2-3% of optimal solution.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectOptimizationen
dc.subjectAlgorithmsen
dc.subjectWorkforce Schedulingen
dc.subjectRobust Optimizationen
dc.subjectNon-Linear Programmingen
dc.subjectMixed Integer Programmingen
dc.titleOptimization Models and Algorithms for Workforce Scheduling with Uncertain Demanden
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programManagement Sciencesen
uws-etd.degree.departmentManagement Sciencesen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages