UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Network Bargaining: Creating Stability Using Blocking Sets

Loading...
Thumbnail Image

Date

2012-01-20T18:52:34Z

Authors

Steiner, David

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Bargaining theory seeks to answer the question of how to divide a jointly generated surplus between multiple agents. John Nash proposed the Nash Bargaining Solution to answer this question for the special case of two agents. Kleinberg and Tardos extended this idea to network games, and introduced a model they call the Bargaining Game. They search for surplus divisions with a notion of fairness, defined as balanced solutions, that follow the Nash Bargaining Solution for all contracting agents. Unfortunately, many networks exist where no balanced solution can be found, which we call unstable. In this thesis, we explore methods of changing unstable network structures to find fair bargaining solutions. We define the concept of Blocking Sets, introduced by Biro, Kern and Paulusma, and use them to create stability. We show that by removing a blocking set from an unstable network, we can find a balanced bargaining division in polynomial time. This motivates the search for minimal blocking sets. Unfortunately this problem is NP-hard, and hence no known efficient algorithm exists for solving it. To overcome this hardness, we consider the problem when restricted to special graph classes. We introduce a O(1)-factor approximation algorithm for the problem on planar graphs with unit edge weights. We then provide an algorithm to solve the problem optimally in graphs of bounded treewidth, which generalize trees.

Description

Keywords

Network Bargaining, Stability, Blocking Sets

LC Keywords

Citation