The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Synthesis and Characterization of Iron-Amide and Iron-Imide-Sulfide Clusters

Loading...
Thumbnail Image

Date

2011-08-30T19:53:10Z

Authors

Zhang, Wei

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The iron-molybdenum cofactor (FeMo cofactor) is the catalytic center of nitrogen fixation in molybdenum-dependent nitrognease enzymes. The resting state cofactor is a complex [MoFe7S9X] cluster, in which the central ligand X is a central hexacoordinated monoatomic light atom (2p), and the exact identity of X is uncertain. The heteroligated, nitrogen-containing core environment of the cofactor cluster may also be relevant to active states, as several mechanistic proposals for cofactor catalysis incorporate substrate-derived nitrogenous moeities into the cluster core during turnover. To this end, we have explored synthetic pathways to the dinuclear and tetranuclear nitrogen-containing iron-sufur clusters, which may mimic the heteroligated core environment of the cofactor. Dinuclear iron-amide clusters Fe2(μ-NHtBu)2[N(SiMe3)2]2 (46) and Fe2(μ-NHtBu)2(μ-S)[N(SiMe3)2]2 (47) are useful precursors for the preparation of [Fe4(NtBu)n(S)4-nCl4]z cubane complexes that span all mixed imide/sulfide core compositions between the classic [Fe4S4] and the more recently reported [Fe4(NtBu)4] homoleptic motifs. The [Fe4NS3] core of the n = 1 cluster is particularly noteworthy in being essentially isometric with the analogous [Fe4S3X] subunit of the FeMo cofactor structure. Synthetic compounds are characterized by single crystal X-ray crystallography, cyclic voltammetry, and UV-Vis, 1H NMR spectroscopies.

Description

Keywords

Iron-amide clusters, Iron-imide-sulfide clusters

LC Subject Headings

Citation

Collections