Show simple item record

dc.contributor.authorDunford, Eric Andrew
dc.date.accessioned2011-05-20 19:46:20 (GMT)
dc.date.available2011-05-20 19:46:20 (GMT)
dc.date.issued2011-05-20T19:46:20Z
dc.date.submitted2011
dc.identifier.urihttp://hdl.handle.net/10012/5967
dc.description.abstractThe consortia of microorganisms responsible for the hydrolysis of cellulose in situ are at present poorly characterized. Nonetheless, the importance of these communities is underscored by their capacity for converting biomass to greenhouse gases such as carbon dioxide and methane. The metabolic capacities of these organisms is particularly alarming considering the volume of biomass that is projected to re-enter the carbon cycle in Arctic tundra soil environments as a result of a warming climate. Novel cold-adapted cellulase enzymes also present enormous opportunities for a broad range of industries. DNA stable-isotope probing (DNA-SIP) is a powerful tool for linking the phylogenetic identity and function of cellulolytic microorganisms by the incorporation of isotopically labelled substrate into nucleic acids. By providing 13C-enriched glucose and cellulose to soil microcosms, it was possible to characterize the communities of microorganisms involved in the metabolism of these substrates in an Arctic tundra soil sample from Resolute Bay, Canada. A protocol for generating 13C-enriched cellulose was developed as part of this thesis, and a visual DNA-SIP protocol was generated to demonstrate the experimental outline. Denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone libraries were used to visualize changes in community structure and to identify prevalent, active phylotypes in the SIP incubations. Notably, predominant phylotypes changed over time and clustered based on substrate metabolism. Labelled nucleic acids identified by sequenced DGGE bands and 16S rRNA gene clone libraries provided converging evidence indicating the predominance of Clostridium and Sporolactobacillus in the 13C-glucose microcosms, and Betaproteobacteria, Bacteroidetes, and Gammaproteobacteria in the 13C-cellulose microcosms. Active populations consuming glucose and cellulose were distinct based on principle coordinate analysis of “light” and “heavy” DNA. A large portion of the recovered sequences possessed no close matches in the GenBank database, reflecting the paucity of data on these communities of microorganisms.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectDNA stable-isotope probingen
dc.subjectmicrobial ecologyen
dc.subjectmicrobiologyen
dc.subjectcellulolysisen
dc.subjecttundra soilen
dc.subjectcultivation-independent methodsen
dc.titleCharacterization of Active Cellulolytic Consortia from Arctic Tundraen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programBiologyen
uws-etd.degree.departmentBiologyen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages