Show simple item record

dc.contributor.authorFischer, Steven 20:15:24 (GMT) 20:15:24 (GMT)
dc.description.abstractMaximum voluntary forces and psychophysically acceptable forces are often used to set force guidelines for exertions as a means to protect against overexertion injuries in the workplace. The focus of this dissertation was the exploration of the roles of whole body balance, shoe-floor friction and joint strength in limiting the capacity of a person to produce maximum voluntary hand forces and psychophysically acceptable hand forces. The underlying goal was to advance knowledge regarding how physical exertion capacity is biomechanically governed, then to use this information to develop models to predict capability based on these governing principles. The hypothesis underscoring this work was that maximum voluntary hand force capability is governed by whole body balance, shoe-floor friction and joint strength; and consequently, psychophysically acceptable forces would be chosen proportionally to this maximum voluntary force capability, where the magnitude of the proportionality was dependent on the limiting factor, or ‘weakest link’. To investigate this hypothesis, both experimental and mathematical modeling paradigms were used. Initially, an experimental study was used to investigate how biomechanical factors governed maximum hand force capability across a range of exertions. It revealed that each governing factor differentially limited maximum force capability. Moreover, this study identified how foot placement, handle height, distance from the handle, friction, and body posture all influence the underlying biomechanical weakest link, and ultimately force producing capability. Data gathered in the experimental study was next used to evaluate a mathematical model that was developed to predict maximum force capability, given information on posture and direction of force application. In addition, the model also predicted population variability in maximum capacity based on the inclusion of a novel approach to probabilistically represent population variability. The evaluation demonstrated that the model underestimated maximum hand force capability compared to measured hand forces by approximately 18, 26, and 41% during medial, pulling and downward exertions respectively. However, it appeared that the ‘weakest link’ principle for predicting maximum force capacity was plausible, as evidenced by significant rank ordered correlations between the measured and predicted hand forces. Further research investigated if psychophysically acceptable forces were selected as a proportion of task specific maximum voluntary force capability, where the proportionality was related to the biomechanical weakest link. Using an experimental design, psychophysically acceptable forces and corresponding maximum forces were measured. Participants chose psychophysically acceptable forces that were 4/5ths of their task specific maximum voluntary force capability when capability was limited by balance. Additionally, they choose psychophysically acceptable forces that were 2/3rds of their maximum voluntary force capability when capability was limited by joint strength. The identification and confirmation of a weakest link proportionality principle represents an important contribution to the field of occupational biomechanics. The weakest link proportionality principle was integrated into the model to allow prediction of: maximum voluntary hand force capability, the limiting factor, and psychophysically acceptable hand force capability. The updated model underestimated empirically measured psychophysically acceptable forces by 24% and 43% during downward and pulling exertions respectively. However, the original model underestimated the maximum hand force capacity by 23% and 34% during the same exertions, without the proportional relationships. This underestimation may be a result of the underlying assumption that joint strength is independent, resulting in an underestimation of maximum joint strength capacity and a corresponding underestimation of maximum hand force capacity. The underestimation may also be due to differences in strength capacities between the participants tested during this thesis compared to those tested in past research used to determine the maximum strength indices reported in the literature. This body of work supported the hypothesis that psychophysically acceptable forces are selected as a proportion of the maximum voluntary hand force, where the proportionality depends on the underlying biomechanical weakest link. The model is a promising first step towards predicting maximum and psychophysically acceptable occupational force threshold limits.en
dc.publisherUniversity of Waterlooen
dc.subjectHand Forceen
dc.titleA biomechanical investigation into the link between simulated job static strength and psychophysical strength: Do they share a “weakest link” relationship?en
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages