Show simple item record

dc.contributor.authorChow, Amy
dc.date.accessioned2010-09-30 18:21:38 (GMT)
dc.date.available2010-09-30 18:21:38 (GMT)
dc.date.issued2010-09-30T18:21:38Z
dc.date.submitted2010-09-27
dc.identifier.urihttp://hdl.handle.net/10012/5551
dc.description.abstractWhen designing work tasks, one goal should be to enable postures that maximize the force capabilities of the workers while minimizing the overall muscular demands; however, little is known regarding specific shoulder tissue loads during pushing and pulling. This study quantitatively evaluated the effects of direction (anterior-posterior pushing and pulling), handle height (100 cm and 150 cm), handle orientation (vertical and horizontal), included elbow angle (extended and flexed) as well as personal factors (gender, mass and stature) on hand force magnitudes, shoulder and L5/S1 joint moments, normalized mean muscle activation and electromyography (EMG)/force ratios during two-handed maximal push and pull exertions. Twelve female and twelve male volunteers performed maximal voluntary isometric contractions under 10 push and pull experimental conditions that emulated industrial tasks. Hand force magnitudes, kinematic data and bilateral EMG of seven superficial shoulder and trunk muscles were collected. Results showed that direction had the greatest influence on dependent measures. Push exertions produced the greatest forces while also reducing L5/S1 extensor moments, shoulder moments with the 150 cm height and overall muscular demands (p < 0.0001). The 100 cm handle height generated the greatest forces (p < 0.0001) and reduced muscular demands (p < 0.05), but were associated with greater sagittal plane moments (p < 0.05). Females generated, on average, 67% of male forces in addition to incurring greater muscular demands (p < 0.05). The flexed elbows condition in conjunction with pushing produced greater forces with reduced overall muscular demands (p < 0.0001). Furthermore, horizontal handle orientation caused greater resultant moments at all joints (p <. 0.05) The results have important ergonomics implications for evaluating, designing or modifying workstations, tasks or equipment towards improved task performance and the prevention of musculoskeletal injuries and associated health care costs.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectShoulderen
dc.subjectMuscle activation patternsen
dc.subjectHand forcesen
dc.subjectPush and Pullen
dc.titleInvestigation of Hand Forces, Shoulder and Trunk Muscle Activation Patterns and EMG/force Ratios in Push and Pull Exertionsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programKinesiologyen
uws-etd.degree.departmentKinesiologyen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages